Reactivity Balance \& Reactor Control System

K.S. Rajan
Professor, School of Chemical \& Biotechnology
SASTRA University

Table of Contents

1 QUIZ 3
1.1 QUESTIONS 3
1.2 ANSWERS 3

1 Quiz

1.1 Questions

1. Determine the multiplication factor for a thermal reactor with the following data: $\mathrm{p}=0.8, \varepsilon=1.02, \mathrm{f}=0.9, \mathrm{P}_{\mathrm{L}}=0.8$ and $\eta=1.8$.
2. Determine reactivity for the data given in problem 1.
3. The number of neutrons per fission in U-235 is 2.4. Determine the number of prompt neutrons.
4. The movement of control rod resulted in a power increase with a period of 100 s . Using $\beta=0.0065$ and $1_{d}=12 \mathrm{~s}$, determine the deviation in multiplication factor from 1.
5. In an experiment, a reactivity of 0.005 is introduced into a critical core. If the temperature coefficient of reactivity is $-10 \mathrm{e}-5 /{ }^{\circ} \mathrm{C}$, determine the increase in temperature that will compensate this reactivity.

1.2 Answers

1. Multiplication factor can be determined using the five-factor formula (Equation 2)
$\mathrm{k}=\mathrm{p} \eta \mathrm{fP}_{\mathrm{L}} \varepsilon$
$\mathrm{k}=0.8 * 1.8 * 0.9 * 0.8 * 1.02=1.057536$
2. $\rho=(k-1) / k=(1.057536-1) / 1.057536=0.0544$
3. Fraction of prompt neutrons $=1-\beta=1-0.0065=0.9935$

Number of prompt neutrons $=2.4 * 0.9935=2.3844$
4. Let us assume that $(\mathrm{k}-1)<\beta ; \mathrm{T}=\beta 1_{\mathrm{d}} /(\mathrm{k}-1)$
$\mathrm{k}-1=\beta 1_{\mathrm{d}} / \mathrm{T}=0.0065^{*} 12 / 100=0.00078$

Since $(k-1)<\beta$, the assumption is justified.

Therefore, $(\mathrm{k}-1)=0.00078$
5. Recall Eq. (8), Temperature coefficient of reactivity $=\alpha=\rho / \Delta T$
$\Delta T=\rho / \alpha=0.005 / 10 \mathrm{e}-5=50^{\circ}$

