Reactivity Balance & Reactor Control System

K.S. Rajan

Professor, School of Chemical & Biotechnology

SASTRA University

Table of Contents

1 QUIZ	3
1.1 QUESTIONS	
1.2 Answers	

1 Quiz

1.1 Questions

1. Determine the multiplication factor for a thermal reactor with the following data: p=0.8, $\epsilon=1.02$, f=0.9, $P_L=0.8$ and $\eta=1.8$.

2. Determine reactivity for the data given in problem 1.

3. The number of neutrons per fission in U-235 is 2.4. Determine the number of prompt neutrons.

4. The movement of control rod resulted in a power increase with a period of 100 s. Using β =0.0065 and l_d=12 s, determine the deviation in multiplication factor from 1.

5. In an experiment, a reactivity of 0.005 is introduced into a critical core. If the temperature coefficient of reactivity is -10e-5 /°C, determine the increase in temperature that will compensate this reactivity.

1.2 Answers

1. Multiplication factor can be determined using the five-factor formula (Equation 2) $k = p\eta f P_L \epsilon$

k=0.8*1.8*0.9*0.8*1.02 = 1.057536

2. $\rho = (k-1)/k = (1.057536-1)/1.057536 = 0.0544$

3. Fraction of prompt neutrons = $1-\beta = 1-0.0065 = 0.9935$ Number of prompt neutrons = 2.4*0.9935 = 2.3844

4. Let us assume that $(k-1) < \beta$; $T = \beta l_d / (k-1)$

 $k-1 = \beta l_d/T = 0.0065*12/100= 0.00078$

Since $(k-1) < \beta$, the assumption is justified.

Therefore, (k-1) = 0.00078

5. Recall Eq. (8), Temperature coefficient of reactivity = $\alpha = \rho/\Delta T$ $\Delta T = \rho/\alpha = 0.005/10e-5= 50$ °